Calculate excess mortality during heatwaves using Hilbert-Huang transform algorithm
نویسندگان
چکیده
BACKGROUND Heatwaves could cause the population excess death numbers to be ranged from tens to thousands within a couple of weeks in a local area. An excess mortality due to a special event (e.g., a heatwave or an epidemic outbreak) is estimated by subtracting the mortality figure under 'normal' conditions from the historical daily mortality records. The calculation of the excess mortality is a scientific challenge because of the stochastic temporal pattern of the daily mortality data which is characterised by (a) the long-term changing mean levels (i.e., non-stationarity); (b) the non-linear temperature-mortality association. The Hilbert-Huang Transform (HHT) algorithm is a novel method originally developed for analysing the non-linear and non-stationary time series data in the field of signal processing, however, it has not been applied in public health research. This paper aimed to demonstrate the applicability and strength of the HHT algorithm in analysing health data. METHODS Special R functions were developed to implement the HHT algorithm to decompose the daily mortality time series into trend and non-trend components in terms of the underlying physical mechanism. The excess mortality is calculated directly from the resulting non-trend component series. RESULTS The Brisbane (Queensland, Australia) and the Chicago (United States) daily mortality time series data were utilized for calculating the excess mortality associated with heatwaves. The HHT algorithm estimated 62 excess deaths related to the February 2004 Brisbane heatwave. To calculate the excess mortality associated with the July 1995 Chicago heatwave, the HHT algorithm needed to handle the mode mixing issue. The HHT algorithm estimated 510 excess deaths for the 1995 Chicago heatwave event. To exemplify potential applications, the HHT decomposition results were used as the input data for a subsequent regression analysis, using the Brisbane data, to investigate the association between excess mortality and different risk factors. CONCLUSIONS The HHT algorithm is a novel and powerful analytical tool in time series data analysis. It has a real potential to have a wide range of applications in public health research because of its ability to decompose a nonlinear and non-stationary time series into trend and non-trend components consistently and efficiently.
منابع مشابه
Author's response to reviews Title:Calculate excess mortality during heatwaves using Hilbert-Huang Transform algorithm Authors:
متن کامل
Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کاملدسته بندی و شناسائی اهداف زیرآبی بر اساس اصوات منتشره
This paper investigates an underwater noise target classification algorithm in order to identify vessels in shallow water. To this aim the Hilbert Huang transform has been used to extract features in order to be used in a classifier. The Support Vector Machine has been considered to identify targets. The proposed method based on Hilbert Huang Transform shows considerable gain against similar ap...
متن کاملEvaluation of a heat warning system in Adelaide, South Australia, using case-series analysis
BACKGROUND Heatwave warning systems aim to assist in reducing health effects during extreme heat. Evaluations of such systems have been limited. This study explored the effect of a heatwave warning programme on morbidity and mortality in Adelaide, South Australia, by comparing extreme events in 2009 and 2014, the latter with exposure to the preventive programme. METHODS The health outcomes du...
متن کاملAn Artificial Neural Network Model for Classification of Epileptic Seizures Using Huang- Hilbert Transform
Epilepsy is one of the most common neurological disorders characterized by transient and unexpected electrical disturbance in the brain. In This paper the EEG signals are decomposed into a finite set of band limited signals termed as Intrinsic mode functions. The Hilbert transom is applied on these IMF’s to calculate instantaneous frequencies. The 2nd,3rd and 4th IMF's are used to extract featu...
متن کامل